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At exascale, the power consumption, resilience, and load balancing 
constraints, especially their dynamic nature and interdependence, 
and the scale of the system require a radical change in future high-
performance computing (HPC) operating systems and runtimes 
(OS/Rs). In contrast to the existing static OS/R solutions, an exas-
cale OS/R is needed that is aware of the dynamically changing re-
sources, constraints, and application needs, and that is able to 
autonomously coordinate (sometimes conflicting) responses to dif-
ferent changes in the system, simultaneously and at scale. To pro-
vide awareness and autonomic management, a novel, scalable 
and self-aware OS/R is needed that becomes the “brains” of the 
entire X-stack (Figure 1). It dynamically analyzes past, current, 
and future system status and application needs. It optimizes system 
usage by scheduling, migrating, and restarting tasks within and 
across nodes as needed to deal with multi-dimensional constraints, 
such as power consumption, permanent and transient faults, re-
source degradation, heterogeneity, data locality, and load balance. 

Interaction with other OS/R components, the programming 
model, and the application are performed in a control loop through 
(1) awareness APIs offering a holistic view of the entire current 
system state, (2) a unified node-local controller processing (a) the 
entire current system state, (b) quality of service (QoS) requests identifying future needs, and (b) models deciding on 
corrective actions, and (3) feedback APIs to perform corrective actions if needed. While models for power manage-
ment, resilience, and load balancing define the general control loop behavior, QoS requests issued by the application 
define the control loop’s policies and steer the employed mechanisms. While the first order of business for the con-
trol loop is to do no harm, it incrementally optimizes the system. However, a fully optimal solution across all nodes 
is likely unachievable due to dynamic behavior, scale, and real-time requirements. 

There are three classes of awareness: (1) the dynamically changing resources, including availability, reliability, 
and performance, (2) the present use of these resources, including task allocation, data locality, utilization, and 
power consumption, and (3) the future needs from these resources, including task schedule, multi-application 
workflow, and QoS requests. The real-time control processes awareness data using models to provide self-awareness 
with optimization at discrete time intervals. Feedback control is used for observed deviations and feed-forward is 
used for predicted deviations. Competing models interact through feedback, cooperating models interact via feed-
forward, and unified models combine capabilities. Each node performs a local control optimizing its usage. For scal-
ability, information across nodes is disseminated using gossip protocols [Dim08] and enclave topologies, piggyback-
ing node-level awareness data on application messages whenever possible. The models are able to process data from 
the same interval within an enclave and from past intervals coming from other parts of the system. 

The work for offering awareness needs to focus on (1) identifying the required input data (based on the decision 
models) and its properties (e.g., linear or non-linear), (2) designing the awareness API to collect the required input 
data, and (3) creating QoS request templates to offer basic initial capabilities (e.g. simple node-local power-aware 
task scheduling/migration, reliability-aware task scheduling/migration, and application-directed load balancing). The 
effort for providing self-awareness has to aim at (1) creating decision models based on an architecture-aware, pa-
rameterized resource abstraction (e.g., per-resource power consumption, reliability, performance, and utilization), 
(2) designing the feedback API to communicate corrective actions (e.g. change task schedule, migrate tasks, and 
restart tasks), (3) identifying the control mechanism (e.g., proportional-integral-derivative or machine learning), and 
(4) investigating the control loop’s stability (e.g. deriving the transfer function). The work for offering a self-aware 
runtime prototype must target a library-based event-driven approach that can be integrated with any exascale execu-
tion model (e.g., MPI+X and HPX [Hel12]) and directly with applications. The research further has to include 
evaluating the effectiveness of the self-aware runtime prototype with DOE applications on Leadership systems. 

Figure 1: The dynamic, self-aware runtime 
forms the “brains” of the X-stack using aware-

ness APIs to multiple X-stack components 
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Related Work 

Power-aware HPC has focused on (1) statically designing energy efficient systems [Bel11], (2) trading off perform-
ance for energy savings using dynamic voltage/frequency scaling [Zhu07], and (3) optimizing performance-per-Watt 
through power-aware scheduling [Li11]. There is currently no power-aware HPC solution for extreme-scale sys-
tems. Also, instead of optimizing energy efficiency, maximizing performance with a given power ceiling is needed 
at exascale. Resilience in HPC includes (1) reactive mechanisms, like application- and system-level check-
point/restart [Wan10] and system-level message logging [Lem04], (2) proactive approaches, such as (a) system-level 
migration of tasks in anticipation of faults [Wan12], (b) reliability-aware scheduling [Got07], and (c) rejuvenation 
[Nak10], (3) programming model approaches, like FT-MPI [Fag05] and containment domains [Sul11], and (4) algo-
rithm-based fault tolerance for (a) dense linear algebra kernels [Du12a], (b) the LINPACK benchmark [Dav11], and 
(c) linear hyperbolic and parabolic PDE solvers [Lta08]. While these solutions address dynamically changing sys-
tems, they are often limited in scaling due to centralized decisions and global actions. Load balancing has been 
realized via (1) data repartitioning embedded in the application [Lan01], (2) data repartitioning supported by a data 
management library [Dev02], or (3) core oversubscription and task migration offered by a runtime [Bha02]. Similar 
to the resilience solutions, scalability is a problem. For all three, existing solutions do not coordinate with other 
components and do not consider other dynamic properties. 

Assessment 
Challenges addressed: This work addresses the exascale OS/R challenges of power, resilience, and dynamic envi-
ronments. By 2020, an exascale system may have up to 1 million nodes with up to 1 billion cores in total using 7 nm 
process technology operating at near-threshold voltage and the entire system bound by a power envelope of 20 MW 
[Kog08, Dal12, Kau12]. This poses several challenges for power, resilience, and performance. Present OS/Rs have 
almost no awareness of changes to system resources during program execution. However, future systems need to 
deal with a variety of dynamic changes. As a system’s self protection mechanism may automatically throttle or 
shutdown resources to avoid exceeding a node’s or the system’s power budget, power-unaware resource usage 
results in performance degradation and resource outages. Permanent and transient faults will occur continuously due 
to decreased component reliability and increased component counts. At 1 billion cores, even a tiny amount of load 
imbalance due to static task scheduling and unforeseen resource contention severely affects overall performance. 
The self-aware OS/R addresses these challenges in a holistic approach using dynamic adaptation. 

Maturity: Prior work has shown that power consumption, resilience, and load balancing can be individually dy-
namically optimized. This work extends these efforts and aims at a holistic solution supporting extreme-scale by 
leveraging existing technology, such as gossip protocols [Dim08], dynamic real-time runtime environments [DiS07], 
and scalable communication infrastructures [CCI12]. The result is a self-aware OS/R that addresses the exascale 
challenges of power, resilience, and dynamic environments. 

Uniqueness: The approach aims at OS/R self-awareness with scalable, autonomic management using a control 
loop guided by power, resilience and load balancing models and application QoS requests. It addresses critical chal-
lenges that are exclusive to exascale systems, such as maximizing performance within a power ceiling, dealing with 
continuous faults, and dynamic load balancing, all at extreme scale. 

Novelty: For all three, power-aware computing, resilience, and load balancing, existing implementations are 
standalone solutions that do not coordinate with the other components of the software stack and that do not consider 
the other dynamic system properties. The proposed concept provides a radically different OS/R with self-awareness 
capabilities that do not exist today. The targeted holistic approach of combining dynamic optimization for power, 
resilience, and performance at scale across the stack is new. 

Applicability: This work deals with dynamically changing resources, i.e., changing resource availability, reli-
ability, and performance, and with design constraints, i.e., fixed system- and subsystem-wide power, by dynamically 
adapting resource utilization in concert with the entire system and the running application. It is applicable to other 
areas with similar issues, such as cloud and mobile computing. 

Effort: The described concept represents high-risk/high-payoff R&D in HPC system software and in modeling 
the power consumption, resilience, and load balancing constraints of extreme-scale HPC systems and applications. 
A large part is the fundamental research required to make the revolutionary leap to put real-time awareness and de-
cision making into a runtime. A prototype self-aware runtime needs to be created and evaluated using DOE applica-
tions, first using only node-local control and then with scalable, enclave-based control. A testing methodology to 
quantify its effectiveness needs to be developed, as well as, corresponding experiments have to be performed on 
DOE’s Leadership computing systems. 
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